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Scattering of Surface Waves by Discontinuities on a
Unidirectionally Conducting Screen®

S. R. SESHADRI{, SENTOR MEMBER, IRE

Summary—It is shown that a plane screen consisting of closely-
spaced parallel wires which are separated from omne another and
which are such that the radius of the wires and the spacing between
them are small in comparison to wavelength, can support a surface
wave, the spread of whose field components depends only on the
angle which the direction of propagation makes with the direction of
the wires. The problem of radiation from a discontinuity in such a
semi-infinite waveguide is studied for the following three types of
discontinuities: 1) when the waveguide terminates in empty space,
2) when it terminates at another such semi-infinite waveguide
having different propagation characteristics, and 3) when it termi-
nates at a perfectly conducting half-plane. In each case, the power
reflection coefficient, where applicable the power transmission coffi-
cient, the loss of power due to radiation, and its angular distribution
are evaluated. The motivation for this investigation is briefly indi-
cated.

INTRODUCTION
r I YHE PROPAGATION of electromagnetic waves

in waveguides with anisotropic walls has in recent

years assumed practical importance in long-
distance waveguide communication.®2 One such wave-
guide which is commonly used is in the form of a
tightly-wound helix, in which the adjacent turns are
separated from each other. In this connection it is of
interest to investigate theoretically the effect on the
propagation of guided waves introduced by the junction
formed by either two different anisotropic (helical)
waveguides or a helical waveguide and a circular wave-
guide having perfectly conducting walls. Also, helical
waveguides of finite length, known commonly as helical
antennas, are widely used to obtain radiation along the
axis of the helix. In view of this practical application
the investigation of radiation from the open end of a
helical waveguide is also of interest.

As a first step in the understanding of the more dif-
ficult problem of radiation from discontinuities in a
helical waveguide, it is advantageous to treat the limit-
ing case in which the radius of the helix becomes in-
finite. For the limiting case, the helical waveguide de-
generates into a plane screen that is conducting only in
the direction of the wires composing it, and insulating
in the perpendicular direction. In this paper, a treat-
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ment is given for the problem of radiation from dis-
continuities in such a planar waveguide consisting of
parallel wires which are separated from each other and
which are such that the radius of the wires and the
spacing between them are quite small compared to
wavelength.

In the first section, it is shown that an anisotropic
planar surface can support a guided wave which is
attenuated exponentially in the direction normal to the
surface. The spread of the field in this surface wave-
guide decreases as the angle between the direction of
propagation and the direction of the wires becomes
close to w/2. Appropriate boundary conditions applica-
ble at the surface of such a unidirectionally conducting
screen have been given recently by Karp.? Radiation
from the open end of such a semi-infinite surface wave-
guide is treated in the next section. Expressions for the
power reflection coefficient and the radiation pattern
are obtained.

In the third section, the electromagnetic fields pro-
duced at the junction of two semi-infinite surface wave-
guides are examined; the wires composing the two sur-
face waveguides are assumed to be in different direc-
tions. It is important to note that by a suitable formula-
tion this problem is reduced to the question of a solution
of a functional equation similar to the one studied previ-
ously by Kay.*

A treatment is given in the final section for the prob-
lem of radiation from the junction formed by a semi-
infinite surface waveguide and a perfectly conducting
half-plane. For this case, the power reflection coeficient
and the radiation pattern are found to be the same as
for the open-ended waveguide.

In an earlier paper,® the problem of excitation of sur-
face waves on a unidirectionally conducting screen has
been investigated.

SURFACE WAVE ON A UNIDIRECTIONALLY
CONDUCTING SCREEN

Consider a unidirectionally conducting screen occupy-
ing the region —ow <yxLw, —w<y<Lw, and £=0,
where x, y, s form a right-handed rectangular coordinate

3 S. N. Karp, “Diffraction of a Plane Wave by a Unidirectionally
Conducting Half-Plane,” Inst. Math. Sci.,, New York University,
N. Y., Res. Rep. No. EM-108; August, 1957.

4 A, F. Kay, “Scattering of a surface wave by a discontinuity in
reactance,” TRE TraNs. ON ANTENNAS AND PropacaTiON, vol.
AP-7, pp. 22-31; January, 1959.

5S. R. Seshadri, “Excitation of surface waves on a unidirec-
tionally conducting screen,” IRE TRrRANs. ON MICROWAVE THEORY
AND TECHNIQUES, vol. 10, pp. 279-286; July, 1962.
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system. Also set up two rotated coordinate systems
(&, m, 2) and (&, 12, 2) where

£i,2 = X Ccos aip+ ysinar,
— xsin a2 + ¥ cos aq,e
0< ay < /2. (1)

Ni,2 =
3=z
The screen is assumed to be conducting in the direction

£ only. The electromagnetic fields E, H satisfy the time
harmonic Maxwell's equations

VX E=1ikH

VX H= — ikE (2)
in the region exterior to the screen. The harmonic time
dependence e~%t is implied for all the field components.

On the screen the following boundary conditions are
satisfied

By (x,3,0) = 0 (3)
HEl(x’ Y, 0+) - H&(x; ¥, U-) =0 (4')
E’n(x7 Y, 0+) - E’Vll(xy v, 0_) = 0. (5)

Let the mode for which H;, =0 be considered. All the
field components are conveniently derived using the
electric vector potential A, which, since Hg, =0, is en-
tirely in the & direction. The geometry of the screen it-
self is independent of the y-coordinate, hence it is reason-
able to look for field components which do not vary
with y. Because of (1), it is seen that

3 3 3 9
— = C0S @1 — — = —sina;— - (6)
d&; dx o ox
Also since
H=VX élA (7)
1 .
E:—;VXVX&A (8)
i

it follows that

H&:O

0
Hﬂl = g ‘4 (x} Z)

a
H, = sin a1 — A(x, 2)
dx

if , 9
Ei = " k* 4 cos alg; A(x, 2)

i g
E, = — ? COS ary SIN g ;; A(x, 2)
1 0?
E, = ? COs ay P A(x, 2). (9

In view of (9), boundary condition (4) is automatically
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satisfied. Boundary condition (5) will be satisfied if

Az, 2) = Az, —2). (10)

For ey #7/2, boundary condition (3) will be satisfied if
A(x, 2) has the form e** sec =1z This shows immediately
that a unidirectionally conducting screen supports a
wave traveling in the x-direction with a phase velocity
vp=c¢ cos oy which is less than ¢, the velocity in free
space. For a wave traveling in the direction of the nega-
tive x-axis, since

9? 92
<+—+kﬁAxJ =0 11
(i 2 )9 b
gk tan a1z z2>0
A (x’ z) = ek see a1z . (12)
ek tan a1z g < 0

It is to be noted that the field components decay expo-
nentially as Iz[ increases. This surface wave is either
“loosely bound” or “tightly bound” to the screen, de-
pending on «; being small or large; there is no surface
wave for a;=0, n/2. Using (9) and (12), the field com-
ponents of the surface wave are written down explicitly
as follows:

fo(xy z) =0
H’ll(x> Z) =
H’(x7 Z) = jg—ik sec a1xe$k tan a1z

E(x, z) = F iH(x, 2).

T p—ik sec airpTk tan arz
+ € e

(13)

In (13), the upper sign if for >0 and the lower sign
z<0. An arbitrary value is used for the constant 4, in
(13). Notice further that

Hixxm(x) Z) = - Hflnh(x) _Z)
thm(xy Z) = Eﬁ,ﬂx(xy _Z)
H. (x,2) = H.J(x, —2)

E.(x,3) = — E,(x, —2). (14)

The relations (14) result on account of the symmetry
about the plane z=0. I is to be noticed that in view of
(14), the equivalent to boundary condition (4) on the
screen 1s

He(x,,0) = 0. (1)

It is now desired to examine the effect of terminating
the surface waveguide (0<x< ») at x=0, on the sur-
face wave given by (13) when it is incident from x= .
On account of the symmetry relations (14), it is enough
to consider the region z>0.

RapraTioNn FrROM THE OPEN END OF THE
STURFACE WAVEGUIDE

No surface wave can be supported in the region x <0,
and therefore the incident surface wave will be partly
reflected back as a surface wave and partly converted
into a radiation field. The current on the screen, and
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therefore the vector potential, are both only in the &
direction and no & component of H is generated by the
discontinuity. It is assumed that & has a small positive
imaginary part €, which is set equal to zero in the final
formulas. All the field components may be obtained
from the vector potential 4 (x, z) which is related to the
electric current density i(x) by the formula

A, 5) = A(x, —2)

- f Y H W [/ (e = &) F 2)de
0
2> 0. (16)
By making use of the following representations
1 @
B = — [ 9 Eoe0a 07
2w
1 ©
i@ = [ eI (17h)
20 _y
1 ®
A9 = — [ oA 9l (170
2w
and (9), it follows for z=0 that
_ 7 —
Ee (5, 0) ::‘};~(k2 — cos? aif?) A((, 0). (18)
Since from (16)
— i
A6, ) = — I(F) ————— ek, 19
9= 110 e (19)
where Im £=1m+/k2—{2>0, (18) reduces to
— 1 7
E:(c,0) = — E};cos2 o[ (ksec ay)? — ¢ T/kl(%)g‘? - (20)

It is first necessarv to know the regions of regularity
of the various transforms in (20). From (13) the inci-
dent total current density is obtained as

1”(.70) = gtk sec alr

(21)
Also as x— o, 2(x) should obviously be of the form

1(.76) — 2[e~zk sec alr _|__ Reik sec aw], (22)

where the first term is the incident current density and
R is the reflection coefficient at x=0. It is found from
(22) that [(k sec a)2—¢2]T({) is regular in the lower
half-plane (Im {<e). Also Eg({, 0) is regular in the
upper half-plane (Im {> —e¢). In addition, the trans-
form of the Hankel function 2/+/k2—¢? is regular and
has no zero in the strip IIm §I <, and therefore the
Wiener-Hopf procedure® can be applied to solve (20).

6 B. Noble, “Methods Based on the Wiener-Hopf Techniques,”
Pergamon Press, Inc., New York, N. Y.; 1958.
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Rewriting (20) as

(B secan)t = IT0) —2

= — 2k Se(}:2 al\/k—;? E£1<§7 0)’ (23)

it is seen that the right-hand side of (23) is regular in
the upper half-plane and the left-hand side is regular in
the lower half-plane. Both are regular in the strip
| Im §“ < e and may be considered as analytic continua-
tions of each other; together they define an integral
function in the finite {-plane. By considering the asymp-
totic behavior of either side of (23) as {— «, the integral
function defined by (23) may be shown to be a constant.
By applying the Meixner corner condition, it is clear
that the singularity of Eg (x, 0) at x =0 is the form x~%/2
and hence Fy,({, 0)~¢=Y? as |{|— ». From the right-
hand side of (23), the integral function is seen to be a
constant. Therefore, it is clear from (23) that I({)~¢3/2
as {—, and hence, it follows that 7(x) vanishes at
x=0 as x%2 This is in accordance with the Meixner
corner condition and the requirement that the current
at the end of the wires composing the screen should

vanish.
From (23) and (17b), it follows that

1 = DvVk—¢
i(x) = —f v 3 ef=dy
20 J o [(k sec ar)? — ¢2]

where D is a constant to be determined, and the
integration contour passes below both the poles
=1k sec ;. By closing the contour in the lower half-
plane, it turns out that <¢(x) =0 for x <0, as it should.
By closing it in the upper half-plane the value of
7(x) for x>0 can be evaluated. In particular, since the
incident current density is contributed by the pole
= —k sec a,, it may be shown using (24) and (21) that

(24)

47B112 gec

= 25
(1 4 sec ay)'/? 25)

Since the pole { =& sec «, gives rise to the reflected cur-
rent density, it is found with the help of (22), (23), and

(25) that
(1 — sec a1>1/2
R=—[—"T"""}).
1 4+ sec

The magnitude of the reflection coefficlent monotoni-
cally increases as ¢, increases.

With the help of (17c), (19) and (24), it follows that
iD , 1
Alx, 2) = ——f efrtiks
dar \/]?-F{(kgsecgay——g‘?)

It is possible to express 4 (x, g) in a closed {orm in terms
of Fresnel integrals. However, since the interest is only
in finding the radiation pattern, the expression for

(26)

dg. (27)
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A(x, 2), valid in the far zone, will be found. Introduce
the polar coordinates

—x=pcos® z=psinf (0<0< 7). (28)

The path of integration in (27) is deformed by setting

= FksinT £ =k cos . (29)
With (28) and (29), (27) reduces to
iD V1 —sinr .
A(p,0) = ———ge sin =07 (30)
4rk3/? (sec? oy — sin®7)

For kp>>1, (30) is evaluated by the method of stationary
phase to vyield

sec ay 2 \?
Ao, ) = — (2
E(1 4 secay)t/?

(1 + cos 6)1/2

,ez(lcp*(wH)) .
(sec? a; — cos? 6)

(31)

Since 4 (p, 8) is in the &; direction, it follows from (1)
and (28) that

Alp, 0)
= [—p coscos as -+ Osinfsina; + §sinai] 4(p, ). (32)

With the help of (32), the components of the field quan-
tities are readily computed and the following result is
obtained:

2 1 (1 + cos 6)

B kTrp (1 4+ sec a1) (sec® @y — cos? )

9

L H|?

i

(33)

Hence, the total power radiated per unit width of the
screen is

Px =fr |H [2pd8 =

4 cos? ay

k tan a(1 + cos a;) '

(34)

It is to be noted that (34) gives the power radiated in
both the half-spaces 220. From (13), the total incident
power flowing across unit width in the direction of
propagation is obtained as

P, = 2f lelﬂcosaldz
0

» 2 cos ay
= 4cosay eTW b iy = (35)

0 k tan oy
The total power carried by the reflected surface wave
per unit width of the screen is obtained using (26), as

follows:
2cosar /1l — cosay
P,=P;|R|2= > (36)
k tan a1 \1 4 cos a;
Using (34) and (36), it results that
2 cos ay
Pr+ P, = = P, (37
k tan o
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Hence, it is seen that the total incident power per unit
width of the screen is equal to the sum of the power
carried by the reflected surface wave and the power
converted into the radiation field.

The radiation pattern as given in (33) is plotted in
Fig. 1 for four different values of «,. It is seen to consist
of a single lobe with its null in the direction of the sur-
face waveguide and its maximum in the direction of the
geometrical extension of the waveguide. Besides, the
beamwidth is seen to reduce as «y is decreased, as is to
be expected {from the behavior of the transverse attenu-
ation in (12). Also, it is obvious from (34) and (35) that
the proportion of the incident power that is radiated
decreases monotonically, at first slowly and then more
rapidly, as e is increased. If the general features of
radiation of the limiting case are also true for the helical
guide, then it follows that as the pitch is increased, both
the reflection at the open end and the beamwidth of the
pattern are reduced for the corresponding mode of
excitation.
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Fig. 1-—Radiation diagram of the surface waveguide with open end.

RapiaTion FrRoOM DiIscoNTINUITY FORMED BY THE
JunctioN or Two SURFACE WAVEGUIDES

Another unidirectionally conducting semi-infinite
screen is now considered to occupy the region
(=0 <xL0, —o<y<L», 2=0) and is joined along
x=0 to the first surface waveguide (<x< w,
— o <y< o, g=0). The second semi-infinite screen
(— o <x<0) is assumed to be conducting in the direc-
tion & and insulating in the perpendicular direction 7.
where &, 1 are given in (1). As before, the surface wave
given by (13) is assumed to be incident from x= «. At
the discontinuity x=0, a part of the incident surface
wave 1s reflected, another part transmitted as a surface
wave and the remaining energy in the incident surface
wave is converted into a radiation field.

A general solution of Maxwell’s equations (2) can be
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obtained” as the sum of two independent solutions £,
and E, such that
Type I. E, = — (H,
Tyl’)e II: E1 = LHl

From (3)—(5), and (15), the
=0 become

(38)

boundary conditions for

£ Er=0forx>0; £-E=0Tforx<0

£-Ey=0fora>0; £-Ey=0 forx <0, (39)
For the incident field it is seen that
Ei= — il forz > 0
Ei = iH for < 0. (40)

Since E; and E, are separated in the boundary condi-
tions and since the fields preserve the symmetry of the
wavetype [namely E; or E;] of the incident wave, it
follows that for the scattered fields also

B =
B =

— iH
i

forg > 0

for z > 0. (41)

Again the symmetry about z=0 [14] permits the de-
tailed consideration of only the region z>0.

The incident field as well as the geometry of the prob-
lem isindependent of the y-coordinate and, hence, all the
components of the scattered field likewise are independ-
ent of the y-coordinate and are therefore derived con-
veniently using the y-component of the electric and
magnetic fields. In view of (41), the entire scattered
field may be derived from the y-component of the mag-
netic field only, using the following relations which are
easily derived from (2):

, 1 9
Ep(x,2) = P H,j(x, )

1 0
Ezs(x; Z) = - ; 'a-; Hyh(-\.y 5)

1 9

Hts(xy Z) = ; & H!/S(xy Z)

1 9
st(x7 Z) = - ; 5 Hl/s(x’) 2’) (42>

The sum of the incident and the scattered fields, denoted
by the superscripts ¢ and s respectively, is the total
field. Since from (2)

62 82
+
ox? 022

+ k{l Hp(x, 2) = 0, (43)

7V. H. Rumsey, “A new way of solving Maxwell's equations,”
IRE TRANS. ON ANTENNAS AND PROPAGATION, vol. AP-9, pp. 461-
465; September, 1961.
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H 2 (x, £) may be assumed as follows:

1
wm@=7fmwmwg (49)

where Im £=Im /E2—£>0.
In view of (13) and (15), the boundary conditions
[(3)-(5)] on the screens become

Hfls(x) 0) =0
H528<x) 0) = - H$2i(x7 0)

fora >0
for x < 0.

(45a})
(45b)
Using (1), (42) and (44), it is found that
HEI’ES(;\‘) :)
1 ¢ ,
= — [i COS &y, — + sin al,g]f(g“)e’?““g’df. (46)
27 k
From (46) and (45a), it is seen that

£
[z' COS oy i + sin a1:|f(§‘) = u+({) (47)

where 7 ({) is regular in the upper hali-plane Im {> —e.
For x <0, it follows from (46) and (13) that
Hi(w,2) = Heole, 9) + Hep(s, 9
1 . £
= — i cos as — + sin agj] J(E)edettde
2 k
_ Sin (052 _ al)e—zk see ale—k tan @z (_1_8)
Rewriting (48) for z=0 as

Hp(x, 0) + Hg'(x, 0)

1 [{ £
= 1 COS ¢
2w k

+- sin az} jite)

7sin (0[2 et al)] . ¥ 49)
—_——— 1§ p
¢+ ksecay errds

and using (45b), it may be argued that

2 sin (0[2 — 0[1)
o @) (50
¢+ kseca ©) (500

[z’ COSO&&%"’ Sina2:|f(§) —

where L=({) is regular in the lower half-plane Im { <e.
Eliminating f(¢) from (47) and (50), it is found that

COS ag Kz(g') i sin (ag — al)

+ = = 51
(e cos ay Ki(¢) ¢+ ksec oy © Gy
where
B k tan ags
K1,(8) = [1 - —}—g—*i:];;} (52)

The transform relation (51) is wvalid in the strip
} Im f[ < e. The zeros of K1 2(¥) lie outside this strip. The
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standard Wiener-Hopf procedure requires the splitting
up of the functions in (52) in the form

Kt () Ko ()
Ki(§) = ; Ky(§) = — (33)
L L TS
where
-
K1a29) ( Etan aj.»s
_ { ; fﬂ“élz}og[l_ \/m]dt (54)
- eXPL 27 —oo T (16/2) &— .

The + and — functions are regular and not zero in the

upper and lower half-planes respectively. Using (53) and

rewriting (51) as

cos ag Kot ({)  isin(ay — a1) Ky (—ksecai)

cos oy KiH(¢) ¢+ ksecay Ki(—ksecay)

Kg_(g_) 7 sin (Oég — C!l)

K () §+ ksecon

Kgi(—k sec al) Kz_(g') .

1= - — N EN)
Kl‘(—k sec al) 1\1‘(‘{')

ut

= L)

it is seen that the left and the right sides are respectively
regular in the upper and the lower hali-planes. Both
sides are regular in the strip l Im §‘| < eand may be con-
sidered as analytic continuations of each other:; together
they define an integral function in the finite {-plane. For
I{!—MO, ut(¢) is 0(¢%) where §>0 in order that the
integrals in (46) converge when z=0. Also, it can be
shown that the factor K *({) are 0(1) as |§‘
Hence, by Liouville’s theorem, the integral function
defined by (55) is zero. Equating the left side of (55) to
zero, an expression for ¢ ({) is obtained, and, using it in
(47) and (44), it readily follows that

Hys(xa Z)

1k sin (as — ay) *

—> 0,

dgertitits
—w |ktana; — \/ET—TJ][S“ + ksec oy
Ko (—ksecay) K*()

Ky (—ksecar) Kot(§)

21 COS s

(56)

Expressions for the transmitted and reflected surface
waves and the radiation field may be obtained by
evaluating (56) asymptotically for large x. From (54),
it follows that

St = -
Frat0) K17 (=9)
and that K;.,=({) is analytic except for the branch
points +% and the logarithmic singularities at
+ ksec ay . The integrand in (54) is 0(1/[¢|?) for large
It’ , and, hence, the integration contour [— « 47e/2 to
w0 +7e/2] may therefore be deformed into a new one

(57)
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embracing the radial branch cut from & to «. This con-
tour may be deformed slightly at any point except
possibly at { =k and { =k sec a; » where the singularities
of the integrand occur. Hence, K; = ({) is analytic and
nonzero everywhere except possibly at k2 and & sec oy ».
In view of (57), K t(¢) is regular and nonzero every-
where except at {= —k, —k sec a1 2. It is evident from
(52) and (53) that
Kt OV~ &

K15 (@) = —=—=—= :
! ( \/§‘2—k2—ktana1,g

(58)

Since K, 2t({) is regular and zero at { =k, it follows from
(58) that K; +=({) has a branch point at {=k. Again be-
cause K; 7 ({) is regular and nonzero at {==% sec o,
K1 57(¢) has a simple pole at {=F sec ay,o. In a similar
fashion, it follows from (58) that K; o*t({) has a branch
point at { = —k and a zero at { = —k sec ay,». The inte-
grand in (56) has, therefore, simple poles at { = + & sec a,
— k sec ay and branch points at { = + k. For x negative,
(56) is evaluated by deforming the contour to a line
parallel to, and just below, the original contour along
the real axis [note that e has been set equal to zero],
with indentations above the singularities of the inte-

grand which occur at {= —k%, —k sec a; and —k sec as.
The poles at { = —k sec a1, give rise to the surface wave,
whereas the singularity at {= —% gives the radiation

field which decays as 1/’90|1’2 for large x. Hence, for
large x, only the surface-wave contributions dominate
and the evaluation of the contribution of (56) at the
poles { = —k sec a2 yields

H,,;(X, Z) = cOoS ale-zk sec a1r—k tan a1z
Ky (—kseca;) Kit(—FEsecas)
K17(—k sec 011) Kgi(—k sec ag)

tan2 (s 7]

=+ cos ay

.e-zr’c sec agr—k tan a2z, (59)
sec as(sec oy — sec an)
From (13) and (1), it is obvious that
Hyz(x, Z) = — cos ale—zk sec alc—k tan a1z, (60)

Using (57), (59) and (60), the total transmitted surface
wave for x <0 is obtained as

[Hll(x’a Z)]t = H!/s(x: Z) + Hyz(xa Z)

B cos a Ko~ (—k sec ay) 1
K1ﬁ<k sec (X2>K1_<—k sSecC al) Kg_(—k sec Oég)
tan? a;

eﬁzk sec agr—Fk tan age

: (61)
sec as{sec ay — sec )

Notice that the incident wave (60) completely nullifies
the surface wave with the value of k tan oy for the
attenuation factor in the z-direction. This should be the
case, since for x <0 the screen is conducting in the &
direction and hence can support only a surface wave
with an attenuation factor k tan a,. It may be easilv
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shown that as as—o
[Hy(x’ z)]t = — COS ale—zk sec alt—k tan a1z — Hyz(x, Z) (62)

This too should be the case, since the incident wave will
then be transmitted as it is without any disturbance.

For x>0, (56) is evaluated by deforming the original
contour along the real axis to one parallel to it slightly
in the upper half-plane and indented below at the
singularities { =k and k sec a;. As before, the contribu-
tion of the integral (56) in the neighborhood of the sin-
gularity ¢ =k gives rise to the radiation field, which for
large x is small compared to the surface wave term.
Evaluating the contribution of the integral near the
pole gives the reflected surface wave

sin (@s — «y) tan al[lx —(— ksec al):|

[H,(x, »]» = et an ko

2 cos ay sec” ay ksec ay)

,ezk sec apt—k tan a1z

(63)

The radiation field is obtained by substituting (28)
and (29) in (56) and evaluating the resulting integral by
the method of stationary phase for kp>3>1. The result
when (52) is made use of is

sin (as — o) Ko (—ksecay)
V 2kp K~ (—Fksecay)
sin 6 1 Ky (kcosb)

N . - (64
|tan a; -+ isin 8] [sec a1 — cos 8] K1 (k cosf) (64)

,Aez(lxp+ (r/))

[H,(x,2)] e =

COS a»

The subscript R denotes the radiation field. Note that
when a; = as, the radiation field goes to zero as it should.

It remains only to determine Ky 5~ ({) from (54) which
has been evaluated by Kay*in a different connection.
[n what follows only the expressions for |K1'2‘(——
will be needed and this is taken from Kay’s paper:

Seshadri: Scattering of Surface Waves

373
culated from (61), (42) and (65) as
® 8 cos a tan aq
[)t = 2 Re f {Et x Ht*dé = . (67)
0 k(tan as + tan ay)?

The power radiated per unit width of the screen per

unit area in the direction 8 is obtained from (64), (42)
and (28) for kp>>1 as
S = Rep-E; X Hp*
2 sin® (@ — a1) sec aj
= - ; f(6)  (68)
wk cos? as (sec ay + sec ay)
where the radiation pattern f(#) is given by
f(8) = sin? @] (1an® &y + sin®6)(sec ey — cos 6)
(sec ay — cos B)} L. (69)

Hence, the total radiated power is

27
P = f Spdf =
0

- |:lan2 o1 SEC ap SEC g — tan oy tan as sec? a;

tan® @s  tan? oy
+ , - 5 . (70}

4 cos? a3 sin ay

E tan? o (tan oy 4 tan a;)?

From (35
tained as

), (66), (67) and (70) R, 7" and S are ob-

(sec as — sec a)?

R = Sin'l (051

(71)
(tan a» + tan ay)*

tan ay — lan aq)?
;o tane ) (72)
(tan a2 + tan ay)?

( §‘-—}? \/g' k —|—ktana12
K[ ‘g“ k V=B — kit £>F
—_— sec a2l - - an ap,»
| Kl,fiZ = \] {' B (65)
[‘ < k
¢ — ksecar
It is desired to find expressions for the power reflection and
coefficient R, the power transmission coefficient 7" and ) cos
. . . COS™ «y
a coefficient S for the radiated power which denote = — |:tan'~’ ay SeC @y Sec s
respectively the proportion of the incident power that [tan s + tan ay]?
is reflected, transmitted and radiated. The total power tan? s lan? a;
in the reflected surface wave per unit width of the guide — tana; tanaysec® o y } (73)
is obtained from (63), (42) and (65) as
1t is easily verified that R4+ 7"+.S=1 as it should. The

I

P, = 2Re f i E, X H*dz
0

2 sin? (s — o) Sin @
_ )siner 0
E cos? as(sec an + sec ay)?

The total power in the transmitted surface wave is cal-

radiation pattern (69) is plotted in Fig. 2 for several
values of oy and .. It is noticed that it has a null in
the plane of the waveguide, and that the beamwidth of
the radiation pattern increases as the maximum of the
pattern moves away from the plane of surface wave-
guide.
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Fig. 2—Radiation diagram of the surface waveguide
for various values of ¢; and aa.

RADIATION FROM DISCONTINUITY FORMED BY THE
JUNCTION OF A SURFACE WAVEGUIDE AND A
PeErrFECTLY CONDUCTING HALF-PLANE

The surface waveguide in the region (— o <x <0,
— o <y< w, z=0) is now assumed to be replaced by a
perfectly conducting half-plane and the incident surface
wave is the same as is given by (13). As before, the inci-
dent, and hence the scattered fields, are independent of
the y-coordinate; therefore, it follows from (2) that

1 9 1 9
Exs = Hys Hx" - — T t‘:r/‘5
ik 0z 1k 9z
E L9 H H Lo E (74)
S = — - — v L= LS I
ik dx ik 9x

One of the boundary conditions on the screen is that
Ex(x, 0) = 0 (75)

Since from (13), Eg*(x, 0)=0, it is obvious that
E¢*(x, 2) =0. Therefore, from (1) and (74), it follows
that

—w <a < w©,

(76)

With the representation (44) for H,*(x, ), the following
relations may be derived using (74), (76) and (1):

¢ _
By, 2) = = | = fgeiited (77)
27 ksin ay
1 cos? ay
HE;(:X"; Z) = e . [k2 sec? oy — g—z]f(g—)
27 k2 sin o
eiteritegy, (78)

The remaining boundary conditions on the screens are
Hﬁxs(x> 0) =0 (79>
Ems(x’ 0) —_ ie‘—"Lk sec a1r (80)

forx > 0
for x < 0.
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In view of (78) and (79), it follows that
(&2 sec? an — §2]f(5) = wt(§),

where u*({) is regular in the upper half-plane Im {> —e.
In a similar manner from (77) and (80), it may be shown
that

(81)

£

ksin oy

&) + = L=(5), (82)

¢+ ksecay

where L=({) is regular in the lower half-plane Im { <e.
The transform relations are regular in the strip
Im §'f <€, and hence the Wiener-Hopf procedure may
be applied. By substituting for f({) in (82) from (81) and
rearranging the resulting expression, it follows that

VE A+t ut()) 2k sec a;
ksinai(kseca; +¢) (¢ + ksec al)\/ﬁ?gz
(ksecan — L () 1
B \/—k—j—f ¢+ ksecay

2k sec ay
]. (83)

|:]€S€Ca1
VE—¢ kA4 kseca;

By the arguments of the Wiener-Hopf procedure (83)
may be shown to define an integral function which is
actually zero. Consequently from (83), (81) and (76),
it is found that

Hy(x, 2)
1 2k? tan adieeteie

= — - (8%)
2rd k4t ksecar VEA (E— kR2sec? ay)

For x negative, (84) is evaluated by deforming the con-
tour to a line parallel to the otigin.l <ontour along the
real axis, slightly in the lower half-plane and indented
above the singularities of the integrand which occur at
{=—Fk, —Fk sec ay. The singularity at {= —k gives the
radiation field which decays as 1/’ x | 12 for large x and,
hence, for large negative x, the significant contribution
arises due to the pole { = —k sec a;. Evaluation of the
residue of the integral at the pole { = —k sec a; gives

(85)

[Hys(x, Z)]t = COS a1 e‘zk sec alr—k tan a1s

Notice that (83) is exactly cancelled by the incident
field (60). This should be the case, since a perfectly
conducting half-plane cannot support a surface wave of
the type (85).

For x>0, (84) is evaluated by deforming the original
contour along the real axis, to one parallel to it slightly
in the upper half-plane and indented below the singu-
larity at { =k sec ai. This pole gives rise to the reflected
surface wave and its value is

7 sin a1

(1 4+ secay)

[Hy(x, Z)]r = 6””0 sec ata—Fk tan a1z, (86)
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To obtain the radiation field, (28) and (29) are sub-
stituted in (84), and the resulting integral is evaluated
by the method of stationary phase for kp>>1. The result
1s

2 \1/2
[Hy(x,, Z)]R = <——> eilbo—(x/9))

wkp
(1 4+ cos )12

(1 4 sec ay)'/? (cos®> 6 — sec? ay)

fan ay

(87)

The total power in the reflected surface wave per unit
width of the screen is easily computed from (86), (74)
and (76) as

2 sin (2%}

. (88
k(1 4 sec ay)? (88)

P, = Zf i-E,. X H*dz =
0

‘The power radiated per unit width of the screen, per
unit area in the direction 6 is obtained from (87), (74),

Surface Waves on Radially

A. VIGANTS{, MEMBER, IRE, AND S,

Summary—A characteristic equation and a cutoff equation are
derived for higher order surface-wave modes on lossless isotropic
cylinders with arbitrary radial permittivity variation. The derivation,
based on the use of the fundamental matrix of a set of differentia]
equations, reduces analytical work and results in expressions well
suited for digital computer evaluation of surface-wave eigenvalues
and mode spectra. The theory is applied in an investigation of HE,,
and EHx mode propagation for a particular set of models for the
radially varying permittivity. Typical results showing eigenvalue
variation, dispersion characteristics and radial field variation, includ-
ing experimental verification of dispersion characteristics, are shown.
The method of analysis can be extended to anisotropic cylinders with

permittivity a function of both radius and frequency.
v
l surface-wave propagation along lossless isotropic
cvlinders with radial permittivity variation. The
permittivity variation may be described by a function
of the radius or an experimental curve, with discontinui-

ties allowed. Step permittivity variation, such as that
created by dielectric rods and tubes made of constant

INTRODUCTION
HIS PAPER is concerned with the problem of
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1 Department of Electrical Engineering, Columbia University,
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(76) and (28) when Ep>>1 as
S = Re ﬁ'ER X HR*
2 1 1+ cosé
= — (89)
mkp (1 4 secay) (sec?a; — cos? )
Hence, the total radiated power is
2w 4 1 cos ay
Pr =f Spdf = — (90)
0 P (1 + sec a1) tan oy

It is to be noted that P, 4+ Pg is equal to P, as given in
(35). The power reflection coefficient and the radiation
pattern are noticed to be the same with or without the
terminating perfectly conducting half-plane.

ACKNOWLEDGMENT

The author wishes to thank Prof. R. W. P. King and
Tai Tsun Wu for their help and encouragement with
this research.

Inhomogeneous Cylinders*

P. SCHLESINGERY, MEMBER, IRE

permittivity material,!:? constitutes a special case of the
problem.

Electromagnetic-wave propagation along cylindrical
structures inhomogeneous in the transverse plane has
been investigated by Adler.3* Some basic results about
orthogonality, power flow and phase constants are ob-
tained but the general problem of formulating the dif-
ferential equations and obtaining their solutions is not
considered. An interesting way to formulate differential
equations for fields in inhomogeneous media has been
proposed by Smith.® The approach is based on a trans-
formation which contains the space dependent per-
mittivity. This involves work with quantities other than
electromagnetic fields and may not be desirable in a
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