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Summary—It is shown that a plane screen consisting of closely-

spaced parallel wires which are separated from one another and

which are such that the radius of the wires and the spacing between

them are small in comparison to wavelength, can support a surface

wave, the spread of whose field components depends only on the

angle which the direction of propagation makes with the direction of

the wires. The problem of radiation from a discontinuity in such a

semi-infinite waveguide is studied for the following three types of

dk.continuities: 1) when the waveguide terminates in empty space,

2) when it terminates at another such semi-infinite waveguide

having dhYerent propagation characteristics, and 3) when it termi-

nates at a perfectly conducting half-plane. In each case, the power

reflection coefficient, where applicable the power transmission coeff-

icient, the loss of power due to radiation, and its angular distribution

are evaluated. The motivation for this investigation is briefly indk

cated.

INTRODUCTION

T

HE PROPAGATION of electromagnetic waves

in waveguides with anisotropic walls has in recent

years assumed practical importance in long-

distance waveguide c-omnlunication. L,2 One such wave-

guide which is commonly used is in the form of a

tightly-wound helix, in which the adjacent turns are

separated from each other. In this connection it is of

interest to investigate theoretically the effect on the

propagation of guided waves introduced by the junction

formed by either two different anisotropic (helical)

waveguides or a helical waveguide and a circular wave-

guide having perfectly conducting walls. Also, helical

waveguides of finite length, known commonly as helical

antennas, are widely used to obtain radiation along the

axis of the helix. In view of this practical application

the investigation of radiation from the open end of a

helical waveguide is also of interest.

As a first step in the understanding of the more dif-

ficult problem of radiation from discontinuities in a

helical waveguide, it is advantageous to treat the limit-

ing case in which the radius of the helix becomes in-

finite. For the limiting case, the helical waveguide de-

generates into a plane screen that is conducting only in

the direction of the wires composing it, and insulating

in the perpendicular direction. In this paper, a treat-
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rnent is given for the problem of radiation from dis-

continuities in such a planar waveguide consisting of

parallel wires which are separated from each other and

which are such that the radius of the wires and the

spacing between them are quite small compared to

wavelength.

In the first section, it is shown that an anisotropic

planar surface can support a guided wave which is

attenuated exponentially in the direction normal to the

surface. The spread of the field in this surface wave-

guide decreases as the angle between the direction of

propagation and the direction of the wires becomes

close to 7r/2. .Lppropriate boundary conditions applica-

ble at the surface of such a unidirectionally conducting

screen have been given recently by I&-p. 3 Radiation

from the open end of such a selni-infinite surface wave-

guide is treated in the next section. Expressions for the

power reflection coefficient and the radiation pattern

are obtained.

In the third section, the electromagnetic fields pro-

duced at the junction of two semi-infinite surface wave-

guides are examined; the wires composing the two ~sur-

face waveguides are assumed to be in different direc-

tions. It is important to note that by a suitable formula-

tion this problem is reduced to the question of a solution

of a functional equation similar to the one studied previ-

ously by Kay.~

A treatment is given in the final section for the prob-

lem of radiation from the junction formed by a semi-

infinite suriace waveguide and a perfectly conducting

half-plane. For this case, the power reflection coefficient

and the radiation pattern are found to be the same as

for the open-ended waveguide.

In an earlier paper,b the problem of excitation of sur-

face waves on a unidirectionally conducting screen has

been investigated.

StTRFACE WTAVE ON A UNIDIRECTIONALLY

CONDUCTING SCREEN

Consider a unidirectionally conducting screen occupy-

ing the region —~s.ts~, —cosyLco, and z=O,

where x, y, z form a right-handed rectangular coordinate
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system. Also set up two rotated coordinate

(fl, ql, Z) and (~z, m, Z) where

fl,~ = x cos ffl,, + y sin al,,

?1,2 = — .t sin al, z + y cos al, j

z=~ 0< a~,~ < T/2.

MICROWAVE THEORY AND TECHNIQUES Sepfember

systems satisfied. Boundary condition (5) will be satisfied if

A (.V, z) = .4 (x, –z) . (lo)

For al #m/2, boundary condition (3) will be satisfied if

.4 (x, z) has the form e~’~ ‘e’ al’. This shows immediately

(1) that a unidirectionally conducting screen supports a

wave traveling in the x-direction with a phase velocity

The screen is assumed to be conducting in the direction VP= c cos al which is less than c, the velocity in free

& only. The electromagnetic fields E, H satisfy the time space. For a wave traveling in the direction of the nega-

harmonic Maxwell’s equations tive x-axis, since

VxE=ikH

V~H=–ikE (2)

in the region exterior to the screen. The harmonic time

dependence e–is’ is implied for all the field components.

On the screen the following boundary conditions are

satisfied

J%,(*,Y, ~) = o (3)

~i,(% y, ~+) – ~f,(% Y, ~–) = o (4)

ET,(X, y, 0+) – E,,(X, y, 0–) = o. (5)

Let the mode for which Ht, = O be considered. All the

field components are conveniently derived using the

electric vector potential A, which, since Hil = O, is en-

tirely in the & direction. The geometry of the screen it-

self is independent of the y-coordinate, hence it is reason-

able to look for field components which do not vary

with y. Because of(1), it is seen that

Also since

H= VX &.4 (7)

E=–+xv x&A,

it follows that

H~, = O

H,, = :.4 (t, z)
.

H. = sin a, ~ A(z, z)

“(

dz

“)
Et, = + k’ + COS2a,= .4(x, Z)

E,, = – ~ cos al sin al $.4 (x, z)

.

E. = : COSal & A(*, z).

(8)

(9)

In view of (9), boundary condition (4) is automatically

(
.

):+:+ k’A(x, z)=O (11)

It is to be noted that the field components decay expo-

nentially as I z I increases. This surface wave is either

“loosely bound” or “tightly bound” to the screen, de-

pending on al being small or large; there is no surface

wave for al= O, 7r/2. Using (9) and (12), the field com-

ponents of the surface wave are written down explicitly

as follows:

H,,(x, Z) = + e-~k ..C .IXeT~ t.~ ~,.

27.(.X, Z) = ie–~k seo .we~k

E(z, z) = T iH(x, z). (13)

In (13), the upper sign if for z>O

z <O. An arbitrary value is used for

(13). Notice further that

and the lower sign

the constant A O in

~bl,(% z) = – ~L,m(% –z)

J%,,,(*, z) = Q,,,,(% –z)

H,(x, z) = H.(x, ‘Z)

~,(t, Z) = – E,(x, –Z). (14)

The relations (14) result on account of the symmetry

about the plane z = O. I is to be noticed that in view of

(14), the equivalent to boundary condition (4) on the

screen is

Ht,(x, y, o) = O. (15)

It is now desired to examine the effect of terminating

the surface waveguide (O < x < ~ ) at x = O, on the sur-

face wave given by (13) when it is incident from x= CIJ.

On account of the symmetry relations (14), it is enough

to consider the region z >0.

RADIATION FROM THE OPEN END OF THE

SL-~FACE WAWGUIDE

No surface wave can be supported in the region x <O,

and therefore the incident surface wave will be partly

reflected back as a surface wave and partly converted

into a radiation field. The current on the screen, and
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therefore the vector potential, are both only in the &

direction and no & component of His generated by the

discontinuity. It is assumed that k has a small positive

imaginary part e, which is set equal to zero in the final

formulas. All the field components may be obtained

from the vector potential A (t, z) which is related to the

electric current densit~’ i(x) by the formula

.’! (J, s) = .4 (x, – z)

--f

i*—
40

i(.t’)uo(l) [k<(x – X’)t + z~]d.i

2 >0. (16)

By making use of the following representations

Ef,(x, z) = + J_-e’f’z?,(l-, Z)d.r (17a)
.

lm
i(%) = —

s
~ir.~(f)d~

2T _m

1
.4 (x, z) = —

f
‘e’r’z((, Z)d(, (17C)

2n’ -m

(17b)

and (9), it follows for z = O that

Zg,(f, 0) = ; (k’ – COS2O&)x(i-, o). (18)

Since from (16)

where Im $= Imv’k2-{z>0, (18) reduces to

It is first necessary to know the regions of regularity

of the various transforms in (20). From (13) the inci-

dent total current density is obtained as

~,(x) = Ze—,k Sec CY1.L (21)

Also as x+=, i(x) should obviously be of the form

where the first term is the incident current density and

R is the reflection coefficient at x = O. It is found from

(22) that [(k sec aJ’ –~’ ]7({) is regular in the lower

half-plane (Im ~ < .s). Also ~t,(~, O) is regular in the

upper half-plane (Im r > — e). In addition, the trans-

form of the Hankel function 2/tiw – {2 is regular and

has no zero in the strip I Im {1 <e, and therefore the

Wiener-Hopf procedurefi can be applied to solve (20).

e B. Noble, “Methods Based on the \Viener-Hopf Techniques, ”
Pergamon Press, Inc., New York, N. Y.; 1958.

Rewriting (20) as

it is seen that the right-hand side of (23) is regular in

the upper half-plane and the left-hand side is regular in

the lower half-plane. Both are regular in the strip

I Im [1 <e and may be considered as analytic continua-

tions of each other; together they define an integral

function in the finite {-plane. By considering the asynnp-

totic behavior of either side of (23) as @~, the integral

function defined by (23) may be shown to be a constant.

By applying the IVIeixner corner condition, it is clear

that the singularity of Eg, (x, O) at x = O is the form X–112,

and hence ~il(f, 0)~{–li2 as I {1 ~ ~. From the right-

hand side of (23), the integral function is seen to be a

constant. Therefore, it is clear from (23) that l(t)N~-8/2

as ~~ m, and hence, it follows that z’(x) vanishes at

% = O as ~1/2. This is in accordance with the Meixner

corner condition and the requirement that the current

at the end of the wires composing the screen should

vanish.

From (23) and (17 b), it follows that

where D is a constant to be determined, and the

integration contour passes below both the poles

r=+ k sec al. BY closing the contour in the lower half-

plane, it turns out that i(x) = O for x <O, as it should.

By closing it in the upper half-plane the value of

i(x) for x >0 can be evaluated. In particular, since the

incident current density is contributed by the pole

~= – k sec a,, it maybe shown using (24) and (21) that

4ikl/2 sec al
D=

(1 + sec aJ’/’ “
(25)

Since the pole ~ = k sec al gives rise to the reflected cur-

rent density, it is found with the help of (22), (23), amd

(25) that

(26)

The magnitude of the reflection coefficient monotoni-

cally increases as al increases.

With the help of (17c), (19) and (24), it follows tlhat

It is possible to express .4 (x, z) in a closed form in terms

of Fresnel integrals. However, since the interest is only

in finding the radiation pattern, the expression for
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A (x, z), valid in the far zone, will be found. Introduce

the polar coordinates

—.r = pcoso z=psin O (0~0~~). (28)

The path of integration in (27) is deformed by setting

{=ksinr <=kcos T. (29)

With (28) and (29), (27) reduces to

~1 – sin.
A (p, 0) = ;;=

“s (see’ al – sin’ r)
e’kp ‘in f’-’)dr. (30)

For kp>>l, (30) is evaluated by the method of stationary

phase to yield

sec al 2

(--)

1[2
.4 (p, 0) = ————

,4(1 + secaJ’/2 71-kp

e ,k,_(r,,))J1 + Cos 0)’/’

(see’ CYl – COS2(3) “
Since .4 (p, 19) is in the & direction, it follows

and (28) that

A(p, 0)

(31)

from (1)

= [-fcos@ cosal+8sin 6sina*+ fsina~]A(p,0). (32)

With the help of (32), the components of the field quan-

tities are readily computed and the following result is

obtained:

(1 + Cos o)
~q,=< 1 —

lmp (1 + sec al) (sec~ al – Cosz0)
~ (33)

Hence, the total power radiated per unit width of the

screen is

Jll
T 4 cos~ 0!1

PR = H 2pd6’ =
k tan al(l + cos al)

. (34)
—r

It is to be noted that (34) gives the power radiated in

both the half-spaces z~O. From (13), the total incident

power flowing across unit width in the direction of

propagation is obtained as

JII
.

PL=2 H’ z COSaldz
o

S

. 2 Cos al
= 4 Cosal o e–‘k “n “;dz =

k tan al
(35)

The total power carried by the reflected surface wave

per unit width of the screen is obtained using (26), as

follows :

P,= P,/ R12=
::::::(%%) ‘3’)

Using (34) and (36), it results that

2 cos al
Pn+Pn= = P+

k tan al
(37)

Hence, it is seen that the total incident power per unit

width of the screen is equal to the sum of the power

carried by the reflected surface wave and the power

converted into the radiation field.

The radiation pattern as given in (33) is plotted in

Fig. 1 for four different values of al. It is seen to consist

of a single lobe with its null in the direction of the sur-

face waveguide and its maximum in the direction of the

geometrical extension of the waveguide. Besides, the

beamwidth is seen to reduce as al is decreased, as is to

be expected from the behavior of the transverse attenu-

ation in (12). Also, it is obvious from (34) and (35) that

the proportion of the incident power that is radiated

decreases monotonically, at first slowly and then more

rapidly, as al is increased. If the general features of

radiation of the limiting case are also true for the helical

guide, then it follows that as the pitch is increased, both

the reflection at the open end and the beamwidth of the

pattern are reduced for the corresponding mode of

excitation.

Fig. l—Radiatiou diagram of the surface waveguide with open end.

RADIATION FROM DISCONTINUITY FORMED BY THE

JUNCTION OF Two SURFACE WAVEGUIDES

Another unidirectionally conducting semi-infinite

screen is now considered to occupy the region

(–~sx<O, –~sy<~, z=O) and is joined along

* = O to the first surface waveguide (O <x S w,
— CO<y <w, z = ()). ‘1’he second semi-infinite screen

( – cc S* S 0) is assumed to be conducting in the direc-

tion .$2 and insulating in the perpendicular direction qz

where &, 772are given in (1). As before, the surface wave

given by (13) is assumed to be incident from x = w. At

the discontinuity x== O, a part of the incident surface

wave is reflected, another part transmitted as a surface

wave and the remaining energy in the incident surface

wave is converted into a radiation field.

A general solution of Maxwell’s equations (2) can be
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obtainedi as the sum of two independent solutions El

and E~such that

Type I: El = – iHl

Type II: El = iH1. (38)

From (3)–(5), and (15), the boundary conditions for

z = O become

For the incident field it is seen that

Ei = – iH’ forz>f)

EI’ = iH’ for z <0. (40)

Since El and Et are separated in the boundary condi-

tions and since the fields preserve the symmetry of the

wavetype [namely El or EZ] of the incident wave, it

follows that for the scattered fields also

lN=-iH forz>fl

Es = iHy for z >0. (41)

Again the symmetry about z = O [14] permits the de-

tailed consideration of only the region z >0.

The incident field as well as the geometry of the prob-

lem is independent of the y-coordinate and, hence, all the

components of the scattered field likewise are independ-

ent of the y-coordinate and are therefore derived con-

veniently using the y-component of the electric and

magnetic fields. In view of (41), the entire scattered

field may be derived from the y-component of the mag-

netic field only, using the following relations which are

easily derived from (2) :

(42)

The sum of the incident and the scattered fields, denoted

by the superscripts i and s respectively, is the total

field. Since from (2)

[ 1
~ + ~ + k’ H,y(.v, Z) = O, (43)

7 V. H. Rumsey, “A new way of solving iMamvell’s equations, ”
IRE TRANS. ON A~TEN~AS AND PICOP~GATION, vol. .\P-9, pp. 461-
465; September, 1961.

E7,Y(.Y, z) may be assulned as follows:

(44)

where Im $= Im V’kz-F~>O.

In view of (13) and (15), the bounclary con{litions

[(.3-(5)] on the screens become

Hg,’(.v, o) = o for 1>0 (4.5a)

Hf,’(1, o) = – Hg,~(x, o) for .~ <0. (4!jb)

Using (1), (42) and (44), it is found that

E3f,,,’(A’, :)

From (46) and (45a), it is seen that

where z~+(~) is regular in the upper half-plane Im ~ > -- K

For x <O, it follows from (46) and ( 13) that

Rewriting (48) for z = O as

and using (45 b), it may be argued that

[ 1 isin (a2 — al)

i cos CYZ ~ + sin az f(f) – — = L-(f) (50)
t+ksecal

where L–(r) is regular in the lower half-plane Im r <: e.

Eliminating J(f) from (47) and (50), it is found that

Cos CY2 fY2(f) i sin (a2 — al)
2L+(~) -–— — ——_ = L-(r) (51)

cos al Kl(f) – f + k sec al

where

[ 1
Ii”,,?(f) = 1 – k ‘an al’2 .

4{2 – ks
(52)

The transform relation (51) is valid in the strip

I Im (l <~. The zeros of Kl,~(f) lie outside this strip. The
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standard Wiener-Hopf procedure requires the splitting

up of the functions in (52) in the form

where

The + and – functions are regular and not zero in the

upper and lower half-planes respectively. t~sing (53) and

rewriting (51) as

Cos CYzK2+({) 2’sin (az — al) Kz-(-k sec al)
~+(f) — —— ——

Cos al Kl+({) – t + k sec al K“I-(–k sec aJ

= ~-(f) ‘z-(t) i sin (a, - ~J

K,-(t) f+ksecal

“[

K,-(- k sec al) K,-(f)

1
(55)

K,-(–k sec aJ – K-(f) ‘

it is seen that the left and the right sides are respectively

regular in the upper and the lower hali-planes. Both

sides are regular in the strip I Im {1 < e and may be con-

sidered as analytic continuations of each other; together

they define an integral function in the finite f-plane. For

lfl+~,
~~+(~) is o(~–~) where 6>0 in order that the

integrals in (46) converge when z = O. .Mso, it can be

shown that the factor Kl,z+(~) are O(1) as I f I ~ ~.

Hence, by Liouville’s theorem, the integral function

defined by (55) is zero. Equating the left side of (55) to

zero, an expression for ~~+({) is obtained, and, using it in

(47) and (44), it readily follows that

H,’(x, z)

sik sin (CYZ— aJ W d{e{<+,t.
—

2r Cos a2 –m [ktar.al– V{’ – k’][~ + k sec al]

JT-(- k sec aJ K“,+(f)

“El-(–k sec al) K,+(r) “
(56)

Expressions for the transmitted and reflected surface

waves and the radiation field may be obtained b~-

evaluating (56) asymptotically for large x. From (54),

it follows that

1
K,,,+(r) = ———

A’1,,-(–r)
(57)

and that Kl,Z–(~) is analytic except for the branch

points ~ k and the logarithmic singularities at

+ k sec al,z. The integrand in (54) is 0(1/I tl ‘) for large

[ tl , and, hence, the integration contour [ - m +ie/2 to

@ +26/2 ] may therefore be deformed into a new one

embracing the radial branch cut from k to a. This con-

tour may be deformed slightly at any point except

possibly at ~ = k and ~ = k sec al,~ where the singularities

of the integrand occur. Hence, Kl,z–({) is analytic and

nonzero everywhere except possibly at k and k sec al,~.

In view of (57), Kl,Z+(~) is regular and nonzero ever}--

where except at {= —k, – k sec cq,!. It is evident from

(52) and (53) that

K,,,+ (f)<~2 – k’
A’, ,,-(f) = ————

v’~z – k’ – k tancw,~ “
(58)

Since Kl,z+(~) is regular and zero at ~ = k, it follows from

(58) that K~,z-(r) has a branch point at r= k. Again be-

cause Kl,z+(r) is regular and nonzero at { = k sec CU,Z,

Kl,’–({) has a simple pole at { = k sec CY1,Z.In a similar

fashion, it follows from (58) that Kl,z+(~) has a branch

point at {= —k and a zero at f= –k sec al,’. The inte-

grand in (56) has, therefore, simple poles at ~ = f k sec al,

– k sec CM and branch points at ~ = f k. For .x negative,

(56) is evaluated by deforming the contour to a line

parallel to, and just below, the original contour along

the real axis [note that e has been set equal to zero],

with indentations above the singularities of the inte-

grand which occur at {= –k, –k sec al and —k sec CY.Z.

The poles at{ = – k sec al,2 give rise to the surface wave,

whereas the singularity at ~ = — k gives the radiation

field which decays as 1/I x I llZ for large x. Hence, for

large x, only the surface-wave contributions dominate

and the evaluation of the contribution of (56) at the

poles ( = – k sec CE1,Zyields

H,,$(.r, z) = cos ale–’~ “c a“-~ ‘“= ““

K2–(– k sec aJ ICI+(– k sec az)
+ Cos a,—

K1–(–k sec al) K?-(–k sec a,)

tanz ax
. ~—,k Secazc—1:ta,n e,. (.59)

sec a2(sec al — sec az)

From (13) and (l), it is obvious that

Hv,(x, z) = _ Cos ~le–z~ se. ci, c-k ton cx12. (60)

Using (57), (59) and (60), the total transmitted surface

wave for x <O is obtained as

[H,(*, z)], = Hv’(a?, z) + H,’(x, z)

cos alKx–(— k sec aJ 1
——

R-l–(k sec CY, )K-(- k sec al) Kz–(– k sec az)

tan2 CY2
.— e—t~, S,C a2L—k tan CY>. (61)
sec ~j(sec al — sec a?)

Notice that the inciient wave (60) completely nullifies

the surface wave with the value of k tan al for the

attenuation factor in the z-direction. This should be the

case, since for x <0 the screen is conducting in the &

direction and hence can support only a surface wave

with an attenuation factor k tan CW. It may be easily
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shown that as a~+al

[H.(*, Z)], = - cc), a,,
_,L ... ~,,–~ t~,, al. = HU~(?, z). (62)

This too shonid be the case, since the incident wave \vill

then be transmitted as it is without any disturbance.

For x >0, (56) is evaluated by deforming the original

contour along the real axis to one parallel to it slightly

in the upper half-plane and indented below at the

singularities ( = k and k ser al. As before, the contribu-

tion of the integral (56) in the neighborhood of the sin-

gularit~- ~ = k gives rise to the radiation field, which for

large .x is small comparecl to the surface wave term.

Evaluating the contribution of the integral near the

pole ~ives the reflected surface wave

[
[H,(.Y, J’)]r = =~-–a~~-:-~ ;;:i:.:.:-:}]’

2 cos CYzsec~ al

.etk . . . al!—], t,.,, c,: (63)

The radiation field is obtained by substituting (28)

and (29) in (56) and evaluating the resulting inte~r.d by

the method of stationary phase for kp>>l. The result

when (52) is made use of is

sin (az — al) K~--(—k sec aJ
[Hl,(x, z)],, = ~+pe’’’’+’””” —

Cos a? A’I–(–k sec al)

sin 6 1 K-(k Cos d)
x —---- — (64)

[tan CKl+ i sin 0] [see al - cos 0] K-(P .0s O)

The subscript R denotes the radiation field. N’ote that

when al= CW, the radiation field goes to zero as it should.

It remains only to determine Kl,,–({) from (54) which

has been evaluated by Kay4 in a different connection.

[n what follows only the expressions for ] Kl,?-(, –f) I ‘

will be needed an{l this is ti~ken from Kay’s paper:

culated from (61), (4.2) .md (65) as

J
m

8 ~os ffL tan~z
1’, = 2 Re .t Et X Ht*dz = ————- —– ~ (67)

o k(tan a, + tan al)’

‘l’he power radiated per unit width of the screen per

unit area in the direction O is obtained from (64), (42)

and (28) for kp>> 1 as

2 sin? (az — al) sec al
——- “f(d) (68)

~k ~os~ ~,, (see a, + sec al)

where the radiation pattern j’(0) is given by

f(fl) = sin’0[ (tan’ aI + sin2 O)(sec aI – COS6)

. (see a, – ccIs d) /-’. (69)

Hence, the total radiated power is

f

I!?r 4 cos2 al sin al
PM = Spdo = ——----–———----–-

0 k tan’ al(lan at + tan aJ’

[
. ianz al sec al sec a~ — tan al tan a? secz al

tan? c22 tanz al

1
+ —y— – –-;-– . (70)

From (35), (66), (67) and (70) R, 7’ an(i S are ob-

tained as

~ = sin,al (see a, – sec al)’

(tan a, + tan a~
(71)

~ = ~ (tan az – tan aJ2

(tan al + tan aJ’
(72)

( {–k ~f’ – kz + k tanal,z
I ———— —

,K1” 12=\ f - k sec a,, ~~{z - k~ - k tanal,!l
f>k

r,— (65)
I

i

{–k
{<k

f – k sec CY1,Z

It is desired to find expressions for the power reflection and

coefficient R, the power transmission coefficient T and
2 cost a!l

a coefficient S for the radiated power which denote s = -----—
[

---— tan? al sec al sec a!

respectively the proportion of the incident power that [tan a, + tan a,]’

is reflected, transmitted and radiated. The total power tan? a2 tan~ al

in the reflected surface wave per unit width of the guide – tan al tan az secz al + ——
0 19“ (73)

is obtained from (63), (42) and (65) as

s

m
f’, =2Re .t E, X H,*dz

o

2 sinz (a? – al) sin al
——

k COS2a~(sec CYZ+ sec CIJZ

The total power in the transmitted surface

L L_l

It is easily verified that R+ 7’+S= 1 as it should. ‘~he

radiation pattern (69) is plotted in Fi,g. 2 for several

values o{ al and w It is noticed that it has a null in

the plane of the waveguide, and that the beamwidth of
(66) the radiation pattern increases as the maximum of the

pattern moves away from the plane of surface wave-

wnve is cal- guide.



374 IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES September

1) al = 15”, C22= 30°
2) al = 30°, al? = 15°
3) al = 30°, a~ = 60°
4) al = 60°, a: = 30°
5) a, = 60°, a, = 45°

Fig. 2—Radiation diagram of the surface waveguide
for T-arious valoes of m aud a,.

RADIATIUN ~ROM DISCONTINLTITY FORMED BY THE

JUNCTION OF A SURFACE WAVEGLTIDE AND A

PEIU?ECTLY CONDLTCTING HALF-PLANE

The surface waveguide in the region ( – co <x S O,
— cc <Y ~ co , z = ()) is now assumed to be replaced by a

perfectly conducting half-plane and the incident surface

wave is the same as is given by (13). As before, the inci-

dent, and hence the scattered fields, are independent of

the y-coordinate; therefore, it follows from (2) that

One of the boundary conditions on the screen is that

E:I(x, O)=O –w<:~<~. (75)

Since from (13), lZf,’(.x, O)= O, it is obvious that

Et:(.Y, z) = O. Therefore, from (1) and (74), it follows

that

(76)

~~ith the representation (44) for HUS (x, z), the following

relations may be derived using (74), (76) and (1) :

(77)

.@’z+ited{. (78)

The remaining boundary conditions on the screens are

Hg:(x, O) = O forx>O (79)

E,,’(z, O) = – ie–’k “C a“ for x <0. (80)

In view of (78) and (79), it follows that

[k’ see’ al - f’]~(f) = u+(f), (81)

where u+(r) is regular in the upper half-plane Im t> — e.

In a similar manner from (77) and (80), it maybe shown

that

&lf(’) + ti~ = ‘-(()’
(82)

where L–(r) is regular in the lower half-plane Im ~ <c.

The transform relations are regular in the strip

I Im ~1 <c, and hence the Wiener-Hopf procedure may

be applied. By substituting forj(~) in (82) from (81) and

rearranging the resulting expression, it follows that

<k+ f u+(~) 2k sec al

k sinal(k secal + ~) + ~~ k sec aJ~k + k sec a,

(k sec a, – {) L-({) + _ 1
—

Jk–t f+ksecal

“[

k sec al 2k sec al

1tik-f-tik+kseca, “
(83)

By the arguments of the Wiener-Hopf procedure (83)

may be shown to define an integral function which is

actually zero. Consequently from (83), (81) and (76),

it is found that

HVS(*, Z)

1

= -s

2k2 tan ald{e’~z+%:z

27r tik + k sec a, <k + r(f’ – k’ see’ q)
. (84)

For .x negative, (84) is evaluated by deforming the con-

tour to a line parallel to the o: igid Lontour along the

real axis, slightl}- in the lomer half-plane and indented

above the singularities of the integrand which occur at

~= – k, – k sec al. The singularity at f= – k gives the

radiation field which decays as 1/] x I ‘i’ for large x and,

hence, for large negative x, the significa~t contribution

arises due to the pole ~ = — k sec al. Evaluation of the

residue of the integral at the pole ~ = — k sec al gives

[Hu’(x, 2)], = cos al e-” ‘e’ ~’-’ ‘an ~’. (85)

Notice that (85) is exactly cancelled by the incident

field (60). This should be the case, since a perfectly

conducting half-plane cannot support a surface wave of

the type (85).

For x >0, (84) is evaluated by deforming the original

contour along the real axis, to one parallel to it slightly

in the upper half-plane and indented below the singu-

Lu-ity at ~ = k sec CW. This pole gives rise to the reflected

surface wave and its value is
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To obtain the radiation field, (28) and (29) are sub-

stituted in (84), and the resulting integral is evaluated

by the method of stationary phase for kp>>l. The result

is

tan al (1 + Cos f))’/’

“(1 + sec aJ’/2 (cos’ (3 – see’ al)
~ (87)

The total power in the reflected surface wave per unit

width of the screen is easily computed from (86), (74)

and (76) as

J
2 sin al

P,=2 “ i. E, X HP*dz =
k(l + secal)’

. (88)
o

The power radiated per unit width of the screen, per

unit area in the direction 0 is obtained from (87), (74),

Surface
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Waves on Radially

VIGANTS~, MEMBER, IRE, AND S.

Summary—A characteristic equation and a cutoff equation are

derived for higher order surface-wave modes on lossless isotropic

cylinders with arbitrary radial permittivit y variation. The derivation,

based on the use of the fundamental matrix of a set of differential

equations, reduces analytical work and results in expressions well

suited for digital computer evaluation of surface-wave eigenvalues

and mode spectra. The theory is applied in an investigation of HEZI

and EH21 mode propagation for a particular set of models for the
radially varying permittivity. Typical results showing eigenvalue

variation, dispersion characteristics and radial field variation, includ-

ing experimental verification of dispersion characteristics, are shown.

The method of analysis can be extended to anisotropic cylinders with

permittivity a function of both radius and frequency.

INTRODUCTION

T

?- HIS PAPER is concerned with the problem of

surface-wave propagation along Iossless isotropic

cylinders with radial permittivity variation. The

permittivity variation may be described by a function

of the radius or an experimental curve, with discontinui-

ties allowed. Step permittivity variation, such as that

created by dielectric rods and tubes made of constant

* Recei\~ed February 16, 1962; revised manuscript recei~-ed hIay
31, 1962. This research was supported by the .\ir Force Cambridge
Research Laboratories under Contract No. .4F 19(604)3879.

T Department of Electrical Engineering, Columbia University,
Sew >rork, N. Y.

(76) and (28) when kp>>l as

S= Refl.EnXH~*

~ 1 l+ COSO
—— ~ (89)

7rkp (1 + sec al) (secz C41 — cos~ 19)

Hence, the total radiated power is

sZ?r

Pr? = Spdb’ = A —~—
Cos al
— . (90)

o k (1 + sec CYJ tan al

It is to be noted that P,+P~ is equal to P, as given in

(35). The power reflection coefficient and the radiation

pattern are noticed to be the same with or without the

terminating perfectly conducting half-plane.
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Inhomogeneous Cylinders*

p. SCHLESINGER~, MEMBER, IRE

permittivity materia

problem.

1,2 constitutes a special case of ‘he

Electromagnetic-wave propagation along cylindrical

structures inhomogeneous in the transverse plane has

been investigated by Adler.3’4 Some basic results about

orthogonality, power flow and phase constants are ob-

tained but the general problem of formulating the dif-

ferential equations and obtaining their solutions is not

considered. .An interesting way to formulate differential

equations for fields in inhomogeneous media hay been

proposed by Smith.5 The approach is based on a transf-

ormation which contains the space dependent per-

mittivity. This involves work with quantities other than

electromagnetic fields and may not be desirable i n a

1 P. Dimnent, S. P. Schlesin~er, and A. Vigants, “,% dielectric sin-

-face wave structure: the V-line, ” IRE TI<ANS. CIN NIxc~ow~l-E
THEORYANDTECHNIQUESvol. MTT-9, pp. 332-337; July, 1961.

2 E. Suitzer, “Cylindrical waveguide modes, ” ~, Opt. Sot. A nz.,
vO]. 51, pp. 491–498; hlay, 1961.

3 R. B. Adler, “Properties of Guided t~aves on Inhomogeueous
Cylindrical Structures, ” Electronics Res. Lab., kI. I. T., Cambridge,
Mass,, Tech. Rept. No. 102; kIay 27, 1949.

4 R. B. Adler, ‘AVaves on inhomogeneous cylindrical structur es,”
PROC. lRE, vol. 40, pp. 339–348; March, 1952?.

6 P. D. P. Smith, “,%-tificial tield equations for a region where p
and e ~-arv with oositiou, ” Y. Appl. J’hys., vol. 21, pp. 1140–1 149;
Novembe;, 1950.’


